Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542880

RESUMO

Recombinant human bone morphogenetic protein 2 (rhBMP-2) is an FDA-approved growth factor for bone regeneration and repair in medical practice. The therapeutic effects of rhBMP-2 may be enhanced through specific binding to extracellular matrix (ECM)-like scaffolds. Here, we report the selection of a novel rhBMP-2-specific DNA aptamer, functionalization of the aptamer in an ECM-like scaffold, and its application in a cellular context. A DNA aptamer BA1 was evolved and shown to have high affinity and specificity to rhBMP-2. A molecular docking model demonstrated that BA1 was probably bound to rhBMP-2 at its heparin-binding domain, as verified with experimental competitive binding assays. The BA1 aptamer was used to functionalize a type I collagen scaffold, and fraction ratios were optimized to mimic the natural ECM. Studies in the myoblast cell model C2C12 showed that the aptamer-enhanced scaffold could specifically augment the osteo-inductive function of rhBMP-2 in vitro. This aptamer-functionalized scaffold may have value in enhancing rhBMP-2-mediated bone regeneration.


Assuntos
Aptâmeros de Nucleotídeos , Proteína Morfogenética Óssea 2 , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Aptâmeros de Nucleotídeos/farmacologia , Tecidos Suporte/química , Simulação de Acoplamento Molecular , Regeneração Óssea , Fator de Crescimento Transformador beta/farmacologia , Proteínas Recombinantes/química
2.
ACS Biomater Sci Eng ; 10(4): 2414-2425, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446137

RESUMO

Bone defects are a common and challenging orthopedic problem with poor self-healing ability and long treatment cycles. The difficult-to-heal bone defects cause a significant burden of medical expenses on patients. Currently, biomaterials with mechanical stability, long-lasting action, and osteogenic activity are considered as a suitable way to effectively heal bone defects. Here, an injectable double network (DN) hydrogel prepared using physical and chemical cross-linking methods is designed. The first rigid network is constructed using methylpropenylated hyaluronic acid (HAMA), while the addition of chitosan oligosaccharide (COS) forms a second flexible network by physical cross-linking. The mesoporous silica nanoparticles (MSN) loaded with bone morphogenetic protein-4 (BMP-4) were embedded into DN hydrogel, which not only enhanced the mechanical stability of the hydrogel, but also slowly released BMP-4 to achieve long-term skull repair. The designed composite hydrogel showed an excellent compression property and deformation resistance. In vitro studies confirmed that the HAMA/COS/MSN@BMP-4 hydrogel had good biocompatibility and showed great potential in supporting proliferation and osteogenic differentiation of mouse embryo osteoblast precursor (MC3T3-E1) cells. Furthermore, in vivo studies confirmed that the DN hydrogel successfully filled and closed irregular skull defect wounds, effectively promoted bone regeneration, and significantly promoted bone repair compared with the control group. In addition, HAMA/COS/MSN@BMP-4 hydrogel precursor solution can quickly form hydrogel in situ at the wound by ultraviolet light, which can be applied to the closure and repair of wounds of different shapes, which provides the new way for the treatment of bone defects.


Assuntos
Hidrogéis , Nanopartículas , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Osteogênese , Dióxido de Silício/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Crânio/cirurgia , Crânio/lesões , Nanopartículas/química
3.
Macromol Biosci ; 24(2): e2300245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37572308

RESUMO

Microspheres (MSs) are ideal candidates as biological scaffolds loading with growth factors or cells for bone tissue engineering to repair irregular alveolar bone defects by minimally invasive injection. However, the high initial burst release of growth factor and low cell attachment limit the application of microspheres. The modification of microspheres often needs expensive experiments facility or complex chemical reactions, which is difficult to achieve and may bring other problems. In this study, a sol-grade nanoclay, laponite XLS is used to modify the surface of MSs to enhance its affinity to either positively or negatively charged proteins and cells without changing the interior structure of the MSs. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is used as a representation of growth factor to check the osteoinduction ability of laponite XLS-modified MSs. By modification, the protein sustained release, cell loading, and osteoinduction ability of MSs are improved. Modified by 1% laponite XLS, the MSs can not only promote osteogenic differentiation of MC3T3-E1 cells by themselves, but also enhance the effect of the rhBMP-2 below the effective dose. Collectively, the study provides an easy and viable method to modify the biological behavior of microspheres for bone tissue regeneration.


Assuntos
Ácido Hialurônico , Osteogênese , Silicatos , Humanos , Ácido Hialurônico/farmacologia , Microesferas , Fator de Crescimento Transformador beta/farmacologia , Proteína Morfogenética Óssea 2/química , Regeneração Óssea , Proteínas Recombinantes/química
4.
Biochemistry (Mosc) ; 88(8): 1116-1125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758311

RESUMO

High efficiency of hybrid implants based on calcium-magnesium silicate ceramic, diopside, as a carrier of recombinant BMP-2 and xenogenic demineralized bone matrix (DBM) as a scaffold for bone tissue regeneration was demonstrated previously using the model of critical size cranial defects in mice. In order to investigate the possibility of using these implants for growing autologous bone tissue using in vivo bioreactor principle in the patient's own body, effectiveness of ectopic osteogenesis induced by them in intramuscular implantation in mice was studied. At the dose of 7 µg of BMP-2 per implant, dense agglomeration of cells, probably skeletal muscle satellite precursor cells, was observed one week after implantation with areas of intense chondrogenesis, initial stage of indirect osteogenesis, around the implants. After 12 weeks, a dense bone capsule of trabecular structure was formed covered with periosteum and mature bone marrow located in the spaces between the trabeculae. The capsule volume was about 8-10 times the volume of the original implant. There were practically no signs of inflammation and foreign body reaction. Microcomputed tomography data showed significant increase of the relative bone volume, number of trabeculae, and bone tissue density in the group of mice with BMP-2-containing implant in comparison with the group without BMP-2. Considering that DBM can be obtained in practically unlimited quantities with required size and shape, and that BMP-2 is obtained by synthesis in E. coli cells and is relatively inexpensive, further development of the in vivo bioreactor model based on the hybrid implants constructed from BMP-2, diopside, and xenogenic DBM seems promising.


Assuntos
Cálcio , Osteogênese , Camundongos , Humanos , Animais , Matriz Óssea , Microtomografia por Raio-X , Magnésio , Escherichia coli , Proteína Morfogenética Óssea 2/química , Silicatos de Magnésio/análise
5.
J Mater Sci Mater Med ; 34(8): 39, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498466

RESUMO

The aim of this study was to produce a composite of microporous ß-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous ß-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from ß-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.


Assuntos
Proteína Morfogenética Óssea 2 , Clindamicina , Alginatos/química , Proteína Morfogenética Óssea 2/química , Cápsulas , Cerâmica/química , Gelatina/química , Hidrogéis/química , Humanos , Animais
6.
Carbohydr Polym ; 315: 121002, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230625

RESUMO

Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive factor that promotes bone formation. A major obstacle to the clinical application of BMP-2 is its inherent instability and complications caused by its rapid release from implants. Chitin based materials have excellent biocompatibility and mechanical properties, making them ideal for bone tissue engineering applications. In this study, a simple and easy method was developed to spontaneously form deacetylated ß-chitin (DAC-ß-chitin) gels at room temperature through a sequential deacetylation/self-gelation process. The structural transformation of ß-chitin to DAC-ß-chitin leads to the formation of self-gelling DAC-ß-chitin, from which hydrogels and scaffolds were prepared. Gelatin (GLT) accelerated the self-gelation of DAC-ß-chitin and increased the pore size and porosity of the DAC-ß-chitin scaffold. The DAC-ß-chitin scaffolds were then functionalized with a BMP-2-binding sulfate polysaccharide, fucoidan (FD). Compared with ß-chitin scaffolds, FD-functionalized DAC-ß-chitin scaffolds showed higher BMP-2 loading capacity and more sustainable release of BMP-2, and thus had better osteogenic activity for bone regeneration.


Assuntos
Proteína Morfogenética Óssea 2 , Hidrogéis , Proteína Morfogenética Óssea 2/química , Hidrogéis/química , Quitina , Preparações de Ação Retardada , Osteogênese , Regeneração Óssea , Engenharia Tecidual/métodos , Tecidos Suporte/química
7.
Int J Biol Macromol ; 237: 124077, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934820

RESUMO

Covalent introduction of bioactive molecules is one of main strategies to significantly enhance the biological activities of bone repair materials. In this study, three most-commonly used chemical groups were respectively introduced on graphene (GP), followed by covalent binding with bone morphogenetic protein-2 (BMP-2) -derived peptides, ensuring that the same molar mass of peptides was bound to different functionalized GP (f-GP). Then the same amount of composites composed of different f-GP and peptides were respectively compounded with poly (lactic-co-glycolic acid) to fabricate 3D scaffolds. In vivo study demonstrated that the scaffolds containing ammonized GP covalently bound with the peptides through amide binding could reach best efficiency of promoting ectopic bone regeneration and repairing calvarial defect probably because the most positive charges on the peptide chain and surface of the ammonized GP could absorb more specific proteins in vivo and have better interactions with them, thereby differentiating most inducible cells into osteogenic cells. Our results indicate that the performances of scaffolds containing covalently bound bioactive molecules can be controlled by the covalent binding mode, and that our prepared scaffold containing ammonized GP covalently bound with the BMP-2-derived peptides through amide binding possess inspiring potential applicable prospects for bone tissue regeneration and engineering.


Assuntos
Grafite , Grafite/química , Osteogênese , Regeneração Óssea , Peptídeos/química , Proteína Morfogenética Óssea 2/química , Amidas , Tecidos Suporte/química , Engenharia Tecidual/métodos
8.
Acta Biomater ; 162: 164-181, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967054

RESUMO

Despite the glimmer of hope provided by the discovery and commercialization of bone morphogenetic protein-2 (BMP-2) as a bone graft substitute, side effects related to the use of supraphysiological doses have hindered its clinical usage. In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving efficient BMP sequestration and controlled release. Using an ectopic implantation model, we then showed that the CHA+BMP-2/7 was more osteoinductive than CHA+BMP-2. Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. Finally, using a rat femoral defect model, we showed that an ultra-low dose (0.5 µg) of BMP-2/7 accelerated fracture healing and performed at a level comparable to 20-times higher BMP-2 dose. Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. STATEMENT OF SIGNIFICANCE: • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results.


Assuntos
Substitutos Ósseos , Durapatita , Ratos , Animais , Durapatita/farmacologia , Colágeno/farmacologia , Colágeno/química , Osteogênese , Osso e Ossos , Consolidação da Fratura , Substitutos Ósseos/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Regeneração Óssea
9.
Tissue Eng Regen Med ; 20(2): 155-156, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36964871

RESUMO

Bone morphogenic protein-2 (BMP-2)-conjugated three-dimensional (3-D)-printed poly (L-lactic acid)(PLLA) scaffold is likely promising as an effective bone substitute for enhancing bone regeneration of massive bone defects caused by tumor resection, traumatic injury, or congenital diseases. The authors developed a new bone substitute using a novel strategy composed of 3-D-printed PLLA scaffolds through a sequential coating of catechol-conjugated alginate (C-AL), BMP-2, and collagen (CO). The 3-D-printed PLLA scaffold was successfully obtained with 5 mm of diameter, 1 mm of thickness, 400 µm of pore size, 187-230 µm of grid thickness, and 82% of porosity. Alkaline phosphatase (ALP) activity of the BMP-2-immobilized PLLA scaffold in MC3T3-E1 and W-20-17 cells was more increased than BMP-2 itself due to the controlled release of BMP-2 from the scaffold. Tenfold new bone formation for the BMP-2-immobilized PLLA scaffold was obtained by micro-CT analysis than PLLA scaffold without BMP-2 weeks after 4 weeks of transplantation model mouse. Further another big animal model study should be performed before clinical trials.


Assuntos
Proteína Morfogenética Óssea 2 , Substitutos Ósseos , Tecidos Suporte , Animais , Camundongos , Regeneração Óssea , Ácido Láctico , Engenharia Tecidual/métodos , Proteína Morfogenética Óssea 2/química
10.
Protein Expr Purif ; 206: 106245, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36805029

RESUMO

Human bone morphogenetic protein 2 (hBMP-2) plays a leading role in the process of osteogenesis and is one of the key components of osteoplastic materials, ensuring their high osteoinduction. In order to obtain a homodimeric form hBMP-2 using the E. coli expression system, a number of problems associated with refolding in vitro and purification from monomer and oligomeric forms must be solved. The developed method for co-expression of the target protein with chaperone proteins makes it possible to obtain the biologically active homodimeric form of hBMP-2 in vivo. Purification with simple ion-exchange sorbents without the use of denaturing reagents affecting the structure of the protein molecule provides a chromatographic purity of the product of at least 97%. The expressed hBMP-2 was identified by Western blotting and the LC-ESI-TOF mass spectrometry confirmed its molecular weight of 26052.72 Da. Circular dichroism spectroscopy showed that recombinant hBMP-2 has a native secondary structure.


Assuntos
Proteína Morfogenética Óssea 2 , Escherichia coli , Humanos , Proteína Morfogenética Óssea 2/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteogênese , Proteína Morfogenética Óssea 7/metabolismo
11.
Int J Biol Macromol ; 232: 123330, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36681218

RESUMO

Bone regeneration is a complex process sequentially regulated by multiple cytokines at different stages. Vascular endothelial growth factor-A (VEGF-A) and bone morphogenetic protein-2 (BMP-2) are the two most important factors involved in this process, and the combination of the two can achieve better bone regeneration by coupling angiogenesis and osteogenesis. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres with core-shell structure (microcapsules) encapsulating VEGF-A or BMP-2 were prepared by coaxial channel injection and continuous fluid technology. The sequential release of two cytokines by microcapsules with different PLGA molecular weight and shell thickness and its performance in vitro were explored. It was demonstrated that the molecular weight of PLGA significantly affected the degradation and release kinetics of microcapsules, while the thickness of the shell can regulate the release in a finer level. VEGF-A encapsulated microcapsules with low molecular weight can induce vascular endothelial cells to form lumens structures in vitro at an early stage. And BMP-2 encapsulated microcapsules could promote osteogenic differentiation, but the effect could be delayed when the microcapsules were prepared with PLGA of 150 kDa. In conclusion, the core-shell PLGA microcapsules in this study can sequentially release VEGF-A and BMP-2 at different stages to simulate natural bone repair.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fator A de Crescimento do Endotélio Vascular/química , Ácido Poliglicólico/química , Ácido Láctico/química , Cápsulas , Células Endoteliais/metabolismo , Proteína Morfogenética Óssea 2/química , Citocinas , Tecidos Suporte/química
12.
Int J Biol Macromol ; 227: 641-653, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549614

RESUMO

A cavity defect inside the bone is formed by deformed cancellous bone from the fixation of the cortical bone, and consequently, abnormal bone healing occurs. Therefore, repairing cancellous bone defects is a remarkable topic in orthopedic surgery. In this study, we prepared bone marrow-derived stem cell (BMSC)-laden and bone morphogenetic protein-2 (BMP-2)-laden visible light-cured carboxymethyl chitosan (CMCS) hydrogels for cortical and cancellous bone healing. Proton nuclear magnetic resonance (1H NMR) analysis confirmed the methacrylation of CMCS (CMCSMA), resulting in 55 % of substitution. The higher concentration of CMCSMA hydrogel resulted in the lower swelling ratio, the larger viscosity, the slower degradation behavior, and the stronger compressive strength. The 5 w/v% hydrogel exhibited a controlled BMP-2 release for 14 days, while the 7 and 10 w/v% hydrogels displayed a controlled BMP-2 release for 28 days. Results of in vitro cytotoxicity and cell proliferation assays revealed the biocompatibility of the samples. In vivo animal tests demonstrated that BMSC- and BMP-2-laden 7 w/v% CMCSMA (CMCSMA+Cell+BMP-2) improved bone formation in the defected cortical and cancellous bones of the femur, as analyzed by micro-computed tomography (micro-CT) and histological evaluations. Consequently, we suggested that CMCSMA+Cell+BMP-2 can be a valuable scaffold for restoring cortical and cancellous bone defects.


Assuntos
Quitosana , Hidrogéis , Células-Tronco , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Osso Esponjoso , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Luz , Microtomografia por Raio-X , Medula Óssea
13.
Adv Healthc Mater ; 11(20): e2201339, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941083

RESUMO

Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.


Assuntos
Proteína Morfogenética Óssea 2 , Osteogênese , Ratos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Titânio , Diferenciação Celular , Matriz Extracelular , Regeneração Óssea , Peptídeos/farmacologia , Peptídeos/química , Materiais Biocompatíveis , Integrinas , Epitopos
14.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269575

RESUMO

The interaction between bone morphogenetic protein-2 (BMP-2) and the surface of biomaterials is essential for the restoration of bone and cartilage tissue, inducing cellular differentiation and proliferation. The properties of the surface, including topology features, regulate the conformation and bioactivity of the protein. In this research, we investigated the influence of nanopatterned surfaces on the interaction of a homodimer BMP-2 with graphite material by combining molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. The graphite substrates were patterned as flat, linear grating, square, and circular profiles in combination with BMP-2 conformation in the side-on configuration. Ramachandran plots for the wrist and knuckle epitopes indicated no steric hindrances and provided binding sites to type I and type II receptors. Results showed two optimal patterns that increased protein adsorption of the lower monomer while preserving the secondary structure and leaving the upper monomer free to interact with the cells. Charged residues arginine and lysine and polar residues histidine and tyrosine were the main residues responsible for the strong interaction with the graphite surface. This research provides new molecular-level insights to further understand the mechanisms underlying protein adsorption on nanoscale patterned substrates.


Assuntos
Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/metabolismo , Grafite/química , Adsorção , Animais , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Nanoestruturas , Ligação Proteica , Conformação Proteica , Propriedades de Superfície
15.
Carbohydr Polym ; 284: 119191, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287909

RESUMO

Bone Morphogenetic Protein (BMP-2) is an osteoinductive growth factor clinically used for bone regeneration. Tuneable sustained strategies for BMP-2 delivery are intensely developed to avoid severe complications related to supraphysiological doses applied. To address this issue, we investigated the ability of the bacterial exopolysaccharide (EPS) called Infernan produced by the deep-sea hydrothermal vent bacterium Alteromonas infernus, exhibiting both glycosaminoglycan-mimetic and physical gelling properties, to efficiently bind and release the bioactive BMP-2. Two delivery systems were designed based on BMP-2 retention in either single or complex EPS-based microgels, both manufactured using a microfluidic approach. BMP-2 release kinetics were highly influenced by the ionic strength, affecting both microgel stability and growth factor/EPS binding, appearing essential for BMP-2 bioactivity. The osteogenic activity of human bone-marrow derived mesenchymal stem cells studied in vitro emphasized that Infernan microgels constitute a promising platform for BMP-2 delivery for further in vivo bone repair.


Assuntos
Microgéis , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Proteínas Morfogenéticas Ósseas , Regeneração Óssea , Glicosaminoglicanos , Humanos , Osteogênese
16.
Biomed Res Int ; 2022: 4133562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342759

RESUMO

Mandibular bone regeneration is still a big challenge in those diabetic patients with poorly controlled blood glucose. In this study, we prepared a novel glucose-sensitive controlled-release fiber scaffold (PVA-HTCC/PEO-rhBMP2-glucose oxidase (PHPB-G)), which contained the recombinant human bone morphogenetic protein 2 (rhBMP2) by coaxial cospinning and grafted with glucose oxidase (GOD). We presented evidence that PHPB-G could undergo a series of structural changes with the blood glucose and promoted bone regeneration in diabetic rat. PHPB-G expanded the voids in nanofibers when blood glucose levels elevated. More importantly, its slow-release rhBMP2 effectively promoted the healing of bone defects. These data suggested that the PHPB-G delivery system may provide a potential treatment strategy for patients with severe diabetic alveolar bone defects.


Assuntos
Diabetes Mellitus , Osteogênese , Animais , Glicemia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Glucose/farmacologia , Glucose Oxidase/farmacologia , Humanos , Ratos , Proteínas Recombinantes/farmacologia , Tecidos Suporte/química
17.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681785

RESUMO

The aim of this study was to compare the bone regeneration ability of particle and block bones, acting as bone scaffolds, with recombinant human bone morphogenetic protein (rhBMP)-2 and evaluate them as rhBMP-2 carriers. Demineralized bovine bone particles, blocks, and rhBMP-2 were grafted into the subperiosteal space of a rat calvarial bone, and the rats were randomly divided into four groups: particle, block, P (particle)+BMP, and B (block)+BMP groups. The bone volume of the B+BMP group was significantly higher than that of the other groups (p < 0.00), with no significant difference in bone mineral density. The average adipose tissue volume of the B+BMP group was higher than that of the P+BMP group, although the difference was not significant. Adipose tissue formation was observed in the rhBMP-2 application group. Histologically, the particle and B+BMP groups showed higher formation of a new bone. However, adipose tissue and void spaces were also formed, especially in the B+BMP group. Hence, despite the formation of a large central void space, rhBMP-2 could be effectively used with block bone scaffolds and showed excellent new bone formation. Further studies are required to evaluate the changes in adipose tissue.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Tecidos Suporte/química , Fator de Crescimento Transformador beta/farmacologia , Animais , Proteína Morfogenética Óssea 2/química , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Bovinos , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Osteogênese/efeitos dos fármacos , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Crânio , Fator de Crescimento Transformador beta/química
18.
Int J Biol Macromol ; 192: 407-416, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597700

RESUMO

Bone defect repair and tissue engineering is specifically challenging process because of the distinctive morphological and structural behaviours of natural bone with complex healing and biochemical mechanisms. In the present investigation, we designed dopamine adhesive chemistry-based fabrication of silk fibroin hydrogel (SFD) with incorporation of nano-hydroxyapatite (nHA)-graphene oxide (GO) hybrid nanofillers with well-arranged porous morphology immobilized with bone morphogenic protein-2 (BMP-2) for the effective in vitro rabbit bone marrow derived mesenchymal stem cells loading compatibility and in vivo new bone regrowth and collagen deposition ability. We have achieved bone-specific hydrogel scaffolds with upgraded structural features, mechanical properties and particularly promoted in vitro osteogenic differentiation and compatibility of rabbit bone marrow mesenchymal stem cells (rBMSCs). Structural and microscopic analyses established greater distributions of components and well-ordered and aligned porous structure of the hydrogel network. In vivo result of new bone regrowth was promisingly higher in the Bm@nHG-SFD hydrogel (85%) group as compared to the other treatment groups of nHG-SFD (77%) and nH-SFD (64%) hydrogel. Overall, we summarized that morphologically improved hydrogel material with immobilization of BMP-2 could be have more attentions for new generation bone regeneration therapies.


Assuntos
Adesivos/química , Proteína Morfogenética Óssea 2/química , Diferenciação Celular , Fibroínas/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Adesivos/síntese química , Animais , Regeneração Óssea , Fenômenos Químicos , Masculino , Fenômenos Mecânicos , Camundongos , Nanoestruturas/ultraestrutura , Osteogênese , Engenharia Tecidual , Tecidos Suporte
19.
Carbohydr Polym ; 273: 118589, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560990

RESUMO

Nowadays, vascularization and mineralization of bone defects is the main bottleneck in the bone regeneration field that is needed to be overcome and developed. Here, we prepared novel in-situ formed injectable hydrogels based on chitosan biguanidine and carboxymethylcellulose loaded with vascular endothelial growth factor (VEGF) and recombinant Bone morphogenetic protein 2 (BMP-2) and studied its influence on osteoblastic differentiation of dental pulp stem cells (DPSCs). The sequential release behavior of the VEGF and BMP-2 from hydrogels adjusted with the pattern of normal human bone growth. MTT assay exhibited that these hydrogels were non-toxic and significantly increased DPSCs proliferation. The Real-time PCR and Western blot analysis on CG11/BMP2-VEGF showed significantly higher gene and protein expression of ALP, COL1α1, and OCN. These results were confirmed by mineralization assay by Alizarin Red staining and Alkaline phosphatase enzyme activity. Based on these evaluations, these hydrogel holds potential as an injectable bone tissue engineering platform.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Portadores de Fármacos/química , Hidrogéis/química , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína Morfogenética Óssea 2/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/toxicidade , Polpa Dentária/citologia , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Guanidinas/química , Guanidinas/toxicidade , Humanos , Hidrogéis/toxicidade , Osteoblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Resistência à Tração , Tecidos Suporte/química , Fator de Crescimento Transformador beta/química , Fator A de Crescimento do Endotélio Vascular/química
20.
J Mater Chem B ; 9(34): 6856-6869, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34396378

RESUMO

Biomimetic delivery of osteoinductive growth factors via an osteoconductive matrix is an interesting approach for stimulating bone regeneration. In this context, the bone extracellular matrix (ECM) has been explored as an optimal delivery system, since it releases growth factors in a spatiotemporal manner from the matrix. However, a bone ECM hydrogel alone is weak, unstable, and prone to microbial contamination and also has been reported to have significantly reduced bone morphogenic protein-2 (BMP-2) post decellularization. In the present work, a microsphere embedded osteoinductive decellularized bone ECM/oleoyl chitosan based hydrogel construct (BOC) was developed as a matrix allowing dual delivery of an anti-resorptive drug (alendronate, ALN, via the microspheres) and BMP-2 (via the hydrogel) for a focal tibial defect in a rabbit model. The synthesized gelatin microspheres (GMs) were spherical in shape with diameter ∼32 µm as assessed by SEM analysis. The BOC construct showed sustained release of ALN and BMP-2 under the studied conditions. Interestingly, amniotic membrane-derived stem cells (HAMSCs) cultivated on the hydrogel construct demonstrated excellent biocompatibility, cell viability, and active proliferation potential. Additionally, cell differentiation on the constructs showed an elevated expression of osteogenic genes in an RT-PCR study along with enhanced mineralized matrix deposition as demonstrated by alkaline phosphatase (ALP) assay and alizarin red assay. The hydrogel construct was witnessed to have improved neo-vascularization potential in a chick chorioalantoic membrane (CAM) assay. Also, histological and computed tomographic findings evidenced enhanced bone regeneration in the group treated with the BOC/ALN/BMP hydrogel construct in a rabbit tibial defect model. To conclude, the developed multifunctional hydrogel construct acts as an osteoinductive and osteoconductive platform facilitating controlled delivery of ALN and BMP-2, essential for stimulating bone tissue regeneration.


Assuntos
Alendronato/química , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Regeneração Óssea , Hidrogéis/química , Animais , Hidrogéis/síntese química , Teste de Materiais , Microesferas , Tamanho da Partícula , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...